A spin-conformal lower bound of the first positive Dirac eigenvalue

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A universal lower bound for the first eigenvalue of the Dirac operator on quaternionic Kähler manifolds

A universal lower bound for the first positive eigenvalue of the Dirac operator on a compact quaternionic Kähler manifold M of positive scalar curvature is calculated. It is shown that it is equal to the first positive eigenvalue on the quaternionic projective space. For this, the horizontal tangent bundle on the canonical SO(3)-bundle over M is equipped with a hyperkählerian structure and the ...

متن کامل

The first conformal Dirac eigenvalue on 2-dimensional tori

Let M be a compact manifold with a spin structure χ and a Riemannian metric g. Let λ2g be the smallest eigenvalue of the square of the Dirac operator with respect to g and χ. The τ -invariant is defined as τ(M,χ) := sup inf q λ2gVol(M, g) 1/n where the supremum runs over the set of all conformal classes on M , and where the infimum runs over all metrics in the given class. We show that τ(T , χ)...

متن کامل

A Lower Bound of The First Eigenvalue of a Closed Manifold with Positive Ricci Curvature

We give an estimate on the lower bound of the first non-zero eigenvalue of the Laplacian for a closed Riemannian manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature.

متن کامل

A Lower Bound of the First Dirichlet Eigenvalue of a Compact Manifold with Positive Ricci Curvature

We give a new estimate on the lower bound for the first Dirichlet eigenvalue for a compact manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature. The result improves the previous estimates.

متن کامل

The First Dirac Eigenvalue on Manifolds with Positive Scalar Curvature

We show that on every compact spin manifold admitting a Riemannian metric of positive scalar curvature Friedrich’s eigenvalue estimate for the Dirac operator can be made sharp up to an arbitrarily small given error by choosing the metric suitably.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2003

ISSN: 0926-2245

DOI: 10.1016/s0926-2245(02)00095-5